Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 39(7): 110812, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35568025

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales , Epítopos , Humanos
2.
bioRxiv ; 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33972947

RESUMEN

SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization when administered early during COVID-19 disease. However, the emergence of variants of concern has negatively impacted the therapeutic use of some authorized mAbs. Using a high throughput B-cell screening pipeline, we isolated a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody called LY-CoV1404 (also known as bebtelovimab). LY-CoV1404 potently neutralizes authentic SARS-CoV-2 virus, including the prototype, B.1.1.7, B.1.351 and B.1.617.2). In pseudovirus neutralization studies, LY-CoV1404 retains potent neutralizing activity against numerous variants including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant and retains binding to spike proteins with a variety of underlying RBD mutations including K417N, L452R, E484K, and N501Y. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved with the exception of N439 and N501. Notably, the binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The breadth of reactivity to amino acid substitutions present among current VOC together with broad and potent neutralizing activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants causing COVID-19. In Brief: LY-CoV1404 is a potent SARS-CoV-2-binding antibody that neutralizes all known variants of concern and whose epitope is rarely mutated. Highlights: LY-CoV1404 potently neutralizes SARS-CoV-2 authentic virus and known variants of concern including the B.1.1.529 (Omicron), the BA.2 Omicron subvariant, and B.1.617.2 (Delta) variantsNo loss of potency against currently circulating variantsBinding epitope on RBD of SARS-CoV-2 is rarely mutated in GISAID databaseBreadth of neutralizing activity and potency supports clinical development.

3.
Small GTPases ; 11(6): 402-412, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-29457987

RESUMEN

When B lymphocytes encounter antigen-bearing surfaces, B-cell receptor (BCR) signaling initiates remodeling of the F-actin network and reorientation of the microtubule-organizing center (MTOC) towards the antigen contact site. We have previously shown that the Rap1 GTPase, an evolutionarily conserved regulator of cell polarity, is essential for these processes and that Rap1-regulated actin remodeling is required for MTOC polarization. The role of Rap2 proteins in establishing cell polarity is not well understood. We now show that depleting Rap2c, the only Rap2 isoform expressed in the A20 B-cell line, impairs BCR-induced MTOC reorientation as well as the actin remodeling that supports MTOC polarization. Thus Rap1 and Rap2 proteins may have similar but non-redundant functions in coupling the BCR to MTOC polarization.


Asunto(s)
Centro Organizador de los Microtúbulos/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Proteínas ras/metabolismo , Animales , Células Cultivadas , Ratones
4.
J Cell Sci ; 130(6): 1094-1109, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28167682

RESUMEN

B cells that bind antigens displayed on antigen-presenting cells (APCs) form an immune synapse, a polarized cellular structure that optimizes the dual functions of the B cell receptor (BCR), signal transduction and antigen internalization. Immune synapse formation involves polarization of the microtubule-organizing center (MTOC) towards the APC. We now show that BCR-induced MTOC polarization requires the Rap1 GTPase (which has two isoforms, Rap1a and Rap1b), an evolutionarily conserved regulator of cell polarity, as well as cofilin-1, an actin-severing protein that is regulated by Rap1. MTOC reorientation towards the antigen contact site correlated strongly with cofilin-1-dependent actin reorganization and cell spreading. We also show that BCR-induced MTOC polarization requires the dynein motor protein as well as IQGAP1, a scaffolding protein that can link the actin and microtubule cytoskeletons. At the periphery of the immune synapse, IQGAP1 associates closely with F-actin structures and with the microtubule plus-end-binding protein CLIP-170 (also known as CLIP1). Moreover, the accumulation of IQGAP1 at the antigen contact site depends on F-actin reorganization that is controlled by Rap1 and cofilin-1. Thus the Rap1-cofilin-1 pathway coordinates actin and microtubule organization at the immune synapse.


Asunto(s)
Actinas/metabolismo , Linfocitos B/citología , Polaridad Celular , Cofilina 1/metabolismo , Sinapsis Inmunológicas/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rap1/metabolismo , Animales , Células Presentadoras de Antígenos/inmunología , Linfocitos B/inmunología , Línea Celular , Membrana Celular/metabolismo , Dineínas/metabolismo , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
5.
J Virol ; 91(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28031365

RESUMEN

Baculovirus occlusion-derived virus (ODV) initiates infection of lepidopteran larval hosts by binding to the midgut epithelia, which is mediated by per os infectivity factors (PIFs). Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes seven PIF proteins, of which PIF1 to PIF4 form a core complex in ODV envelopes to which PIF0 and PIF6 loosely associate. Deletion of any pif gene results in ODV being unable to bind or enter midgut cells. AC83 also associates with the PIF complex, and this study further analyzed its role in oral infectivity to determine if it is a PIF protein. It had been proposed that AC83 possesses a chitin binding domain that enables transit through the peritrophic matrix; however, no chitin binding activity has ever been demonstrated. AC83 has been reported to be found only in the ODV envelopes, but in contrast, the Orgyia pseudotsugata MNPV AC83 homolog is associated with both ODV nucleocapsids and envelopes. In addition, unlike known pif genes, deletion of ac83 eliminates nucleocapsid formation. We propose a new model for AC83 function and show AC83 is associated with both ODV nucleocapsids and envelopes. We also further define the domain required for nucleocapsid assembly. The cysteine-rich region of AC83 is also shown not to be a chitin binding domain but a zinc finger domain required for the recruitment or assembly of the PIF complex to ODV envelopes. As such, AC83 has all the properties of a PIF protein and should be considered PIF8. In addition, pif7 (ac110) is reported as the 38th baculovirus core gene.IMPORTANCE ODV is essential for the per os infectivity of the baculovirus AcMNPV. To initiate infection, ODV binds to microvilli of lepidopteran midgut cells, a process which requires a group of seven virion envelope proteins called PIFs. In this study, we reexamined the function of AC83, a protein that copurifies with the ODV PIFs, to determine its role in the oral infection process. A zinc finger domain was identified and a new model for AC83 function was proposed. In contrast to previous studies, AC83 was found to be physically located in both the envelope and nucleocapsid of ODV. By deletion analysis, the AC83 domain required for nucleocapsid assembly was more finely delineated. We show that AC83 is required for PIF complex formation and conclude that it is a true per os infectivity factor and should be called PIF8.


Asunto(s)
Proteínas de la Cápside/fisiología , Nucleocápside/metabolismo , Nucleopoliedrovirus/fisiología , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Células Sf9 , Spodoptera , Ensamble de Virus , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...